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Abstract

Unstructured grid adaptation is a technology that holds the potential to improve the automation and accuracy of computational fluid 
dynamics and other computational disciplines. Difficulty producing the highly anisotropic elements necessary for simulation on 
complex curved geometries that satisfies a resolution request has limited this technology’s widespread adoption. The Unstructured 
Grid Adaptation Working Group is an open gathering of researchers working on adapting simplicial meshes to conform to a metric 
field. Current members span a wide range of institutions including academia, industry, and national laboratories. The purpose of 
this group is to create a common basis for understanding and improving mesh adaptation. We present our first major contribution: 
a common set of benchmark cases, including input meshes and analytic metric specifications, that are publicly available to be 
used for evaluating any mesh adaptation code. We also present the results of several existing codes on these benchmark cases, to 
illustrate their utility in identifying key challenges common to all codes and important differences between available codes. Future 
directions are defined to expand this benchmark to mature the technology necessary to impact practical simulation workflows.

1. Introduction

Continued advancements in both computers and algorithms have revolutionized the analysis and design processes

for aerospace vehicles though Computational Fluid Dynamics (CFD) tools. CFD simulation places unique demands on

the grids required for accurate discretization and solution that are not required for other classes of physical modeling.

Alauzet and Loseille [1] document the dramatic progress made in the last decade for solution adaptive methods that

include the anisotropy to resolve simulations with shocks and boundary layers. Remaining challenges are identified

by the application of these solution adaptive techniques. Park et al. [2] document the current state of solution based

anisotropic grid adaptation and motivate further development with the impacts improved capability would have on
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aerospace analysis and design. This focus on unstructured grid adaptation is provided in the broader context of the

CFD Vision 2030 Study by Slotnick et al. [3]. The Vision Study provides a number of case studies to illustrate the

current state of CFD capability and capacity and the potential impact of emerging High Performance Computing

(HPC) environments forecast in the year 2030. A key finding of the study is that, “Mesh generation and adaptivity

continue to be significant bottlenecks in the CFD workflow, and very little government investment has been targeted

in these areas.” [3] A set of benchmark cases are documented in this article, which present a framework to evaluate

currently available anisotropic grid adaptation methods. This allows the strengths and deficiencies in current tools

to be shared and sets the stage for targeted research via a community of developers. These benchmarks are readily

available to foster collaboration between established international researchers and new entrants into this research

topic. This will enhance the exchange of ideas between industry, academia, and government researchers through

collaboration and accelerate development to address these bottlenecks.

The encouragement of new entrants is key to making anisotropic grid adaptation technology ubiquitous and im-

pacting practitioner workflows. Appendix C of Park et al. [2] addresses the critical adoption piece of this technology

and advocates the need for multiple implementations, because technology diffusion research has identified the num-

ber of institutions that make a firm entry of a product into the market, is a stronger driver than the strengths of an

individual product for new technology adoption [4].

These benchmark cases are a continuation of the efforts of Park et al. [5] to decompose the solution adaptive

process into a number of subprocesses that can be independently verified, evaluated, and improved. Developing

and documenting the evaluation methods is equally important as the test cases themselves. This first version of the

benchmarks focus on the grid adaptation mechanics. Extensions of the benchmarks are envisioned that examine error

estimation, which will continue as an acute need for efficiency and robustness of grid adaptation. An example of this

acute need is that Michal et al. [6] show that the lack of a reliable error estimate can reduce the efficiency of advanced

automated anisotropic grid adaptation methods. This first benchmark or its extensions could also become a precursor

to a workshop (e.g., Levy et al. [7]) as the size of the solution adaptive community grows.

Providing a benchmark of anisotropic grid adaptation tools to the greater community allows comparing different

implementations to understand the implications of implementation choices. This verification by comparison approach

is also employed by the Turbulence Modeling Resource Website [8]. “What makes the current website unique is that

it focuses on providing ready access to equations, grids, and flow solution details from previously verified codes as

an aid to users who wish to verify their own implementations of models on relatively simple cases” [8]. The goal of

this work is to define a framework for rigorous examination of anisotropic grid adaptation methods that can guide the

implementation and further development and adoption of solution adaptive methods.

2. Benchmarks Site

A central repository for the UGAWG has been established on GitHub [9]. This site houses the data necessary

to set up and run benchmark test cases along with results from various adaptation tools. The top level of the site is

divided into adapt-benchmarks and adapt-results repositories. The adapt-benchmarks section contains a collection

of test cases that UGAWG members can use to evaluate meshing tools and includes geometry definitions, initial

meshes and metric fields for each case. The adapt-results section contains results generated and uploaded by various

UGAWG participants using several different meshing tools. These benchmark cases and the associated results provide

the opportunity to evaluate, compare and contrast meshing tools with other contemporary tool sets. The Git version

control system [10] and the GitHub website have become vehicles for collaboratively contributing to open source

software projects. In many ways, the central repository for the UGAWG is leveraging this software ecosystem to

lower the barriers to contribution and encourage new entry into unstructured grid adaptation research.

2.1. Geometry Models

The benchmarks currently contain two models. The geometry for the first benchmark case is represented by a unit

cube. This case was selected to evaluate a meshing tools ability to match a prescribed metric field in the absence

of surface curvature. This case provides the opportunity to evaluate the metric conformance without introducing ge-

ometry projection or surface curvature complications. By removing geometry projection issues, this cube test case
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can easily be completed by most adaptive remeshing tools, which provides a common baseline for comparison. The

second geometry model subtracts from the unit cube a cylinder of radius 0.5 oriented along the z-axis positioned at

x = 0, y = 0. This case tests the ability of the meshing tool to build a mesh that conforms to a metric field while

simultaneously maintaining the geometry shape. The geometry definition is provided in STEP and Electronic Geom-

etry Aircraft Design System (EGADS [11]) formats for remeshing tools that have an embedded geometry modeling

kernel. Due to the simple shapes of the Cube or Cube-Cylinder, geometry can also be represented analytically.

2.2. Metric Distribution

In addition to the geometry definition, each benchmark test case includes a prescribed mesh sizing distribution.

The sizing distribution is provided in the form of analytically defined metric functions. Three metric distributions

have been defined that represent anisotropic features commonly found in computational analysis problems. The first

is a linear function with anisotropic stretching centered about the z = 0.5 plane.

The linear metric field is described by:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
h2

x 0 0

0 h−2
y 0

0 0 h−2
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (1)

where hx = 0.1, hy = 0.1, h0 = 0.001 and hz = h0 + 2(0.1− h0)|z− 0.5| . This metric field is representative of a shear

layer in the absence of curvature and will be referred to as the Linear-1.

The second metric field is described by:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(t) − sin(t) 0

sin(t) cos(t) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
h−2

r 0 0

0 h−2
t 0

0 0 h−2
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(t) sin(t) 0

− sin(t) cos(t) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (2)

where r =
√

x2 + y2, t = atan2(y, x), hz = ht = 0.1, h0 = 0.001 and hr = h0 + 2(0.1− h0) |r − 0.5| .Where t is in the

θ direction and r is the radial direction. This metric field represents a curved shear layer positioned with the curved

surface of the Cube-Cylinder geometry. This metric distribution will be referred to as Polar-1.

A slight modification to the Polar-1 distribution is also used and is defined as:

d = 10 (0.6 − r) , and ht =

⎧⎪⎨⎪⎩
0.1 if d < 0

d/40 + 0.1(1 − d) if d ≤ 0
(3)

This modified Polar distribution has lower gradation and is easier to satisfy with high-quality elements by refining in

the θ-direction near the layer. It is the Polar-2 distribution.

2.3. Test Cases

Three benchmark test cases have been defined for this paper. The first case consists of the Cube geometry with

the Linear-1 metric distribution. This baseline benchmark tests the ability of a meshing tool to build a mesh that

conforms to a metric distribution in the absence of geometry or metric curvature. Metric conformance is measured

by comparing the edge lengths of the resulting mesh with the prescribed metric distribution. Poor levels of metric

conformance could indicate a fundamental problem with the implementation of the meshing operators and should

be investigated before moving onto the other benchmark cases. The remaining benchmark cases combine the Cube-

Cylinder geometry model and the Linear-1, Polar-1, and Polar-2 distributions. The Cube-Cylinder with Linear-1

introduces geometry curvature away from the presence of a highly anisotropic metric field and is a good measure

of a meshing tools geometry preservation capability. The next benchmark cases consisting of the Cube-Cylinder

model and Polar-1 begins to explore the interaction between curved geometry and a highly anisotropic geometry

aligned metric field. This case is representative of attached shear layers commonly found in fluid flow problems. The

final benchmark consisting of the Cube-Cylinder and Polar-2 distribution is similar to the objectives of the previous

benchmark but is easier to achieve higher quality elements in the adapted mesh due to less aggressive gradation.
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Evaluation criteria for all test cases is described in detail in Section 4 and includes metric conformance as measured

by edge length relative to the prescribed metric (see Equation 4), as well as an element quality measure in metric

space (see Equation 6). Each participating code took slightly different approaches, and Section 3 will describe these

approaches in as much detail as is possible within article length constraints.

2.4. Evaluation Framework

To provide a consistent evaluation of meshes, a common set of tools was used to measure the metric conformance

and other evaluation criteria on all meshes. The libMeshb [12] format was chosen as the common file format for

transferring mesh data between the meshers and the mesh evaluation tool. Each mesh was read into the evaluation

tools and compared against the analytic metric field. The tools produce three kinds of output: a rendering of the mesh

using ParaView [13], histograms of metric edge lengths and metric element qualities, and maximum/minimum length

and quality values. A comparison and analysis of the resulting evaluation data is provided in Section 4.

3. Participating Codes

UGAWG members provided grid adaptation codes that are the result of industry, academic, and governent invest-

ment and development. Some are open source, which allows for detailed examination of implementation details.

3.1. EPIC

EPIC is a Boeing internally developed grid adaptation tool that combines local edge break, edge collapse, element

reconnection and node smoothing operators [6, 14]. EPIC development has focused on industrial aerospace CFD

applications with emphasis on robust handling of complex geometry and efficient use of parallel computing resources.

Edge lengths in EPIC are computed with numerical integration of the metric field along an edge instead of assuming

a linear variation of the metric M in log-Euclidean space as shown in Equation 4. EPIC grids using three sets of mesh

operators are presented: only insertion and collapse (EPIC-IC); insertion, collapse, and swap (EPIC-ICS); insertion,

collapse, swap, and node movement (EPIC-ICSM).

3.2. refine

Adaptive grid results from two versions of the refine tool are presented. The refine software package is developed

and distributed by NASA. Both versions are designed to produce a unit mesh [15] in a provided metric field. The

original version, refine/one, is documented by Park and Darmofal [16]. The current version under development,

refine/two, uses the combination of edge split and collapse operations proposed by Michal and Krakos [14]. Node

relocation is performed to improve adjacent element quality. A new ideal node location of the node is created for

each adjacent element. A convex combination of these ideal node locations is chosen to yield a new node location

update that improves the element shape measure in the anisotropic metric [17]. Geometry is accessed through EGADS

application program interface.

3.3. Omega h

Omega h is an open-source grid adaptation library [18–20], developed by Rensselaer Polytechnic Institute and

subsequently by Sandia National Laboratories. Like the other codes in this study, it aims to be a state-of-the-art

implementation of grid adaptation by local topological modifications. Omega h has certain unique objectives: First,

it targets tightly coupled adaptivity within a simulation, which requires remapping the solution accurately. This

motivates minimizing the number of modifications. Second, it targets simulations outside the CFD space, including

solid mechanics and shock hydrodynamics. This motivates a much stronger focus on element quality and efficient

operation with isotropic metrics. Third, it targets high performance execution using threading and even GPUs.

The core algorithm in Omega h consists of one loop of alternating edge splitting and edge collapsing to satisfy

length, followed by another loop that uses edge swapping and edge collapsing to satisfy quality. Snapping to geometry
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(using EGADS) is part of the second (quality) loop: a step is added, which moves all nodes as far as they can toward

the snapping goal, followed by swapping/collapsing to correct shapes. To accommodate highly anisotropic target

metrics, Omega h applies its full adaptive algorithm several times, where the metric used each time is an interpolated

metric between the original implied metric and the final desired metric. In both snapping and metric approaching,

the criteria that determines the step size is element quality (the step is halved until all elements are above a minimum

quality in the interpolated metric space). For all results presented, the minimum quality threshold was set to 30% (see

Equation 6).

3.4. Pragmatic

Pragmatic [21, 22] is an open source 2D and 3D anisotropic remesher developed as a C++ library at Imperial

College London. Initially targeted at geophysical flow simulations, it now aims at generating quality meshes for a

wide range of numerical simulations. It has been integrated into the PETSc library [23, 24].

The adapted mesh is obtained from the input mesh through a series of local mesh manipulations. Iterative applica-

tions of coarsening (edge collapse), edge/face swapping and refinement (edge splitting) first optimize the resolution

and the quality of the mesh, followed by a final quality-constrained Laplacian smoothing step that fine-tunes the

mesh quality. The element internal quality function that is optimized is the functional defined in Vasilevskii and

Lipnikov [25]. Pragmatic was started as a hybrid threads and MPI parallel code. Since then, the enthusiasm for hy-

brid parallelism has waned on the solver side, so a more classic purely distributed memory approach was favored in

Pragmatic.

Whereas adaptation of surfaces based on CAD representation using EGADS is in progress, an ad hoc procedure

is used in this paper that projects new vertices onto an analytic surface as soon as they are created. In the Polar-1

Cube-Cylinder case (see Equation 2), a coarse metric in the radial direction (h0 = 0.1) is initially prescribed and then

h0 is progressively reduced to the desired metric in a series of steps.

3.5. feflo.a

Feflo.a is an adaptation code developed at INRIA. It is based on a two-step procedure to generate a unit-mesh [26,

27]. The first step aims at improving the edges length distribution with respect to the input metric field. In its

original version, only classical edge-based operators (insertion and collapse) are used during this step. The second

step is optimization of the mesh element shape measures with node smoothing and tetrahedra edge and face swaps.

Feflo.a can handle nonmanifold surface and/or volume meshes composed of simplicial elements. For the surface mesh

adaptation, a dedicated surface metric is used to control the deviation of the metric and surface curvature. This surface

metric is then combined with the input metric. New points created on the surface are projected to a (fine) background

surface grid and optionally CAD via the EGADS API.

More recently, classical edge-based operators have been replaced by a unique cavity-based operator [28, 29]. This

cavity-based operator simplifies code maintenance, increases the success rate of mesh modifications, has a constant

execution time for many different local operations, and robustly inserts boundary layer grids [30]. When the cavity

operator is combined with advancing-point techniques, it produces metric-aligned and metric-orthogonal meshes [31].

3.6. adaptive process

To mimic the requirements of a solution adaptation process, the analytic metric is evaluated on an input mesh. The

adaptation mechanics interpolate the metric from the input mesh during adaptation. The adapted mesh becomes the

input mesh and the adaptation process is repeated until the adapted grid and the input mesh are equivalent to edge

length statistics. Multiple cycles of metric evaluation are necessary because the initial grid does adequately represent

the analytic metric.

4. Results

For this publication, we use two local criteria of metric satisfaction. First, we measure the edge-length criterion

as presented by Park et al. [5]. Our formula for edge length is based on an assumption that the logarithm of desired
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(a) EPIC-IC. (b) EPIC-ICS. (c) EPIC-ICSM. (d) feflo.a.

(e) Omega h. (f) refine/one. (g) refine/two. (h) Pragmatic.

Fig. 1. Meshes for the linear cube metric.

length varies linearly along the edge [32] and is defined by

Le =

⎧⎪⎪⎨⎪⎪⎩
La−Lb

log(La/Lb)
|La − Lb| > 0.001

La+Lb
2

else
, (4)

La = (vT
e Mave)

1
2 , Lb = (vT

e Mbve)
1
2 . (5)

An ideal edge has a metric length of one in a unit mesh. Second, we also examine element quality, using the mean

ratio formula for tetrahedra (Equation 6) where K is a tetrahedron, |K| is its volume, ve is the vector along one of its

edges e, and |K̂| is the volume of a tetrahedron with unit edge lengths. Mmax is a single metric tensor being used to

measure the whole tetrahedron. In this case, we choose Mmax as the adjacent vertex metric with largest determinant,

QK =

(
|K| det(Mmax)

1
2

|K̂|

) 2
3

1
6

∑
e∈K vT

e Mmaxve
, (6)

Mmax = arg max
Mv,v∈K

det Mv. (7)

An ideal element has an ideal mean ratio of one. We also consider the global criterion of number of elements, as

the main purpose of solution-based adaptivity is to minimize the number of degrees of freedom while maximizing

accuracy.

4.1. Linear Cube Case

Table 1 presents the statistics for the satisfaction criteria that each code produced with the linear metric input

over the cube domain. In the EPIC family, we see a clear improvement in minimum quality and edge length range

as operators are added going from EPIC-IC to EPIC-ICS and EPIC-ICSM. The high maximum length measures for

EPIC are likely due to the fact that it does not use Equations 4 and 5 to measure length internally [5]. Omega h,

feflo.a, and refine/one all achieve the same maximum length of 1.80, although feflo.a and Omega h have higher
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Table 1. Criteria statistics for linear cube metric.

Code Min. Quality Min. Length Max. Length #Elements

EPIC-IC 0.10 0.15 3.48 50860

EPIC-ICS 0.25 0.32 3.05 49262

EPIC-ICSM 0.36 0.39 2.44 45892

feflo.a 0.49 0.45 1.80 45158

Omega h 0.30 0.21 1.80 51666

refine/one 0.06 0.03 1.80 112543

refine/two 0.05 0.29 1.67 51587

Pragmatic 0.46 0.34 1.67 49332
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Fig. 2. Length histograms for the linear cube metric.

qualities and minimum lengths. EPIC-IC, EPIC-ICS, and Omega h all get roughly the same element count (50K),

while EPIC-ICSM and feflo.a get slightly better element counts (45K). This is likely due to their use of smoothing

(mesh motion), which allows more fine tuning than topology modifications alone. The feflo.a statistics are the best in

terms of minimum quality, minimum length, and element count.

Fig. 2 shows a more in-depth look at the edge length distributions for the linear cube metric via histograms. Once

again we see a distinction between codes with and without smoothing, with flatter length profiles for EPIC-IC, EPIC-

ICS, and Omega h showing two distinct local maxima. This is likely due to the use of upper and lower thresholds to

choose when to refine and coarsen edges. A refinement can be viewed as removing an edge from a high histogram bin

and adding several edges to lower bins, accumulating edges in bins just below the threshold. Since the thresholds are

typically spaced a factor of two apart, we see the two accumulations of edges. EPIC-ICSM and feflo.a show a much

smoother, bell-curve-like distribution with a single maximum. Recall from Table 1 that refine/one produces twice as

many elements as the other codes, and the explanation for this can be found in Fig. 2f: it produces many short edges

that other codes coarsen. The quality histograms for this case are omitted; all codes showed similar distributions.

4.2. Linear Cube-Cylinder Case

There are three different metric cases with the Cube-Cylinder geometry, which adds geometric curvature as a new

difficulty. Table 2 shows minima and maxima for the relevant criteria for each code. The refine/one code is absent

for cube-cylinder geometry cases, because it has not implemented the EGADS API for curved geometry resolution.

On this geometry, we start to see EPIC-IC perform much worse than other codes, with the longest edge being over

50× longer than desired, the shortest edge being 100× shorter than desired, and the minimum quality being below the

output precision of our measurement tools. Fortunately, EPIC-ICS and EPIC-ICSM perform much better, with edge

length ranges similar to their cube results. Omega h maintains its minimum quality at 30%, and has a decent edge

length range, comparable to the EPIC codes. While Pragmatic achieves a good maximum length bound, its minimum

length and quality are much smaller than they were on the linear cube problem.
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(a) EPIC-IC. (b) EPIC-ICS. (c) EPIC-ICSM. (d) Omega h.

(e) Pragmatic. (f) feflo.a. (g) refine/two.

Fig. 3. Meshes for the linear cube-cylinder metric.

Table 2. Criteria statistics for linear cube-cylinder metric.

Code Min. Quality Min. Length Max. Length #Elements

EPIC-IC < 0.001 0.01 57.65 32711

EPIC-ICS 0.16 0.34 2.83 37481

EPIC-ICSM 0.19 0.32 3.26 34236

Omega h 0.30 0.29 1.97 40956

Pragmatic 0.01 0.02 2.06 38668

feflo.a 0.04 0.21 2.55 46291

refine/two 0.04 0.16 1.73 38668
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Fig. 4. Length histograms for the linear cube-cylinder metric.

Fig. 4 presents edge lengths as histograms. Both EPIC-IC and EPIC-ICS show two local maxima. At the extrema,

EPIC-IC and Pragmatic both have noticeable percentages of their edges in the very low range of [0, 0.25] while all

the EPIC codes show a significant tail of edges in the high range [2.0, 2.5]. The quality histograms for the linear

cube-cylinder metric are shown in Fig. 5. Here we see an interesting property of EPIC-IC on this geometry: a spike of
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Fig. 5. Quality histograms for the linear cube-cylinder metric.

(a) EPIC-IC. (b) EPIC-ICS. (c) EPIC-ICSM. (d) Omega h.

(e) Pragmatic. (f) feflo.a.

Fig. 6. Meshes for the Polar-1 Cube-Cylinder metric.

elements in the very low quality range [0, 0.1] which could not be corrected by its limited set of operators. EPIC-ICS

and EPIC-ICSM correct this spike, suggesting that swapping is the key shape-correction operator. The histograms of

EPIC-ICS, EPIC-ICSM, and Omega h all look fairly similar, which taper until no significant percentages can be seen

below 20%, while Pragmatic has a tail of low-quality elements that continue down to the lowest levels.

4.3. Polar-1 Cube-Cylinder Case

Due to the curvature of the metric specification itself, the main issue in satisfying this metric is high metric grada-

tion. As presented in Table 3, all codes produced a very low minimum quality. Omega h does not even converge if it

cannot find a solution with all elements above 30% quality, so for this metric Omega h preprocessed the metric using

gradation control [32, 33]. The resulting mesh is shown as the result in Fig. 6d. This is what inspired the creation of

the Polar-2 metric (see Section 4.4), which is an analytic equivalent of what gradation control did to the metric. In

particular, it refines along the tangent direction in order to reduce the rate of metric gradation due to curvature. We

still judge the resulting Omega h mesh by the original Polar-1 metric, hence it technically gets a minimum quality
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Table 3. Criteria statistics for Polar-1 Cube-Cylinder metric.

Code Min. Quality Min. Length Max. Length #Elements

EPIC-IC < 0.001 0.003 67.64 17338

EPIC-ICS 0.05 0.13 6.32 21916

EPIC-ICSM 0.05 0.20 7.45 20237

Omega h 0.14 0.11 1.71 52235

Pragmatic 0.01 0.02 1.74 33629

feflo.a 0.01 0.18 17.40 35310
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Fig. 7. Length histograms for the Polar-1 Cube-Cylinder metric.
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Fig. 8. Quality histograms for the Polar-1 Cube-Cylinder metric.

result of 14% here. EPIC-IC continues to show poor performance, while EPIC-ICS and EPIC-ICSM show better

performance. EPIC-ICS and EPIC-ICSM have maximum lengths that are approximately twice what they were in the

linear cube-cylinder case in Table 2. Pragmatic shows a good maximum length, but has very small minimum lengths

and qualities. The curved surface mesh of feflo.a is clearly too coarse (see Fig. 6f), likely due to not selecting the best

option for handling this highly graded metric.

Length histograms for the Polar-1 metric in Fig. 7 show similar patterns for the EPIC codes, with the main dif-

ference being the reduction of small edges as operators are added. Omega h and Pragmatic show similar and better

controlled distributions, consistent with their maximum edge length results. feflo.a still shows a good distribution,

illustrating how histograms alone don’t capture important details, and justifying our inclusion of tables of extrema

and renderings. In the quality histograms (Fig. 8), EPIC-ICS, EPIC-ICSM, and Pragmatic have similar profiles where

frequency increases almost linearly with quality, but noticeable amounts in very low range [0, 0.1]. Omega h has a

different distribution, likely with a lower average quality, but a much steeper and more controlled distribution in the

low range.

4.4. Polar-2 Cube-Cylinder Case

The modification defining the Polar-2 metric specifically targets a reduced gradation rate, and Table 4 shows that

the minimum qualities improved significantly for all codes compared to Table 3 for Polar-1, suggesting a connection

between metric gradation rate and the best attainable element quality. Note also that EPIC-ICS and EPIC-ICSM have

attained maximum lengths on par with their usual best in the linear cases, suggesting that gradation rate also has an

effect on satisfiability of the metric as measured by the length criteria. Omega h is able to attain its threshold quality

of 30%, the best in the group. Finally, note that if one compares the renderings in Fig. 6 to those in Fig. 9, then

EPIC-ICS, EPIC-ICSM, and feflo.a are now much more in agreement with Omega h and Pragmatic.

The length histograms for the Polar-2 metric were largely the same as for the Polar-1 metric (Fig. 7), and we omit

them for brevity. The quality histograms, on the other hand, show very significant differences between the Polar-1

metric in Fig. 8 and the Polar-2 metric in Fig. 10. All codes (except EPIC-IC) now show a good distribution of quality
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(a) EPIC-IC. (b) EPIC-ICS. (c) EPIC-ICSM. (d) Omega h.

(e) Pragmatic. (f) feflo.a.

Fig. 9. Meshes for the Polar-2 cube-cylinder metric.

Table 4. Criteria statistics for Polar-2 Cube-Cylinder metric.

Code Min. Quality Min. Length Max. Length #Elements

EPIC-IC < 0.001 < 0.001 70.53 21664

EPIC-ICS 0.15 0.30 3.01 36538

EPIC-ICSM 0.19 0.45 3.04 33417

Omega h 0.30 0.24 1.81 49151

Pragmatic 0.05 0.12 1.73 47203

feflo.a 0.06 0.18 2.65 53117
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Fig. 10. Quality histograms for the Polar-2 cube-cylinder metric.

centered to the far right with no noticeable percentages in the low range [0, 0.2]. Omega h also shows this nominal

distribution, as opposed the strange distribution it had in Fig. 8d. This supports the idea that metric gradation has a

significant effect not just on minimum attainable quality but on the qualities of elements all throughout the mesh.

5. Future Directions

Unstructured mesh adaptation has proven to be a reliable tool to predict complex phenomena with complex geome-

tries [1, 6] for steady and unsteady flow regimes. The adaptive process is an iterative procedure where the mesh and

the solution are updated to reach an optimal mesh solution coupled with a desired level of accuracy. We decompose

this process into: (1) error estimation, (2) mesh generation, and (3) solution computation. However, the full benefit of
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adaptivity is then achieved only when (1), (2), and (3) are optimally combined. This first set of benchmarks focus on

analytic metric-conformity for a simple geometry. We list the main issues that will be addressed by the next sets of

test cases for the verification and validation of mesh generation:

Surface mesh adaptation. Surface mesh adaptation becomes critical when an initial mesh is used as in the local

remeshing approach. This is even more critical when a boundary layer or highly anisotropic areas are present in

the initial mesh and need to be modified. Indeed, due to the presence of the volume mesh near the surface mesh,

refining an element may lead to the creation of a negative volume element. This high level of anisotropy has to

be then correctly blended with the surface approximation estimate in order not to create numerical artifacts on the

geometry. The quality, level of anisotropy, robustness and CPU time need to be assessed for the algorithms described

in this paper. We intend to provide test cases starting from more complex initial meshes and with a very high level of

anisotropy near the surface. These challenging initial meshes and metrics assess the robustness of the surface mesh

adaptation component with respect to the initial starting mesh and the level of anisotropy.

CAD integration. For industrial applications, the use of CAD data is crucial as many quantities of interest depend

on the geometry. Providing high quality surface mesh becomes a mandatory feature. We intend to define simple test

cases featuring one typical CAD issue at a time: missing topology, CAD tolerance to edges larger than the required

mesh size, and highly skewed parameterization.

Adaptive boundary layer. The generation of a boundary layer mesh is generally designed for isotropic surface

grids, and is generated only once [30, 34]. Consequently, the boundary layer is frozen while adapting the outer part of

the domain [35]. However, this frozen boundary layer mesh strategy is insufficient when the boundary layer interacts

with other anisotropic features. The design and assessment of algorithms that are well suited to quickly generate

boundary layer meshes in the presence of anisotropic surface meshes is necessary. Test cases will be designed with:

(i) an analytical boundary layer metric, and (ii) a solution-based boundary layer metric.

Parallel environment. Finally, the (potential) integration into an HPC environment [36] of each previous mesh

refinement techniques needs to be studied. We intend to revisit all the database test cases in a parallel environment. In

particular, we can discuss the quality of the generated parallel grids with respect to the sequential one, and also assess

the performance advantage of the parallel mesh generation (for surface and volume).

In a more general setting, we then intend to extend progressively the number of test cases and results to more

complex geometries and metrics following the discussion of Park et al. [2]. We will apply the same approach as in the

preliminary study [5], where only one component is modified (for instance, the error estimate) while the remaining

components are kept unchanged (e.g., flow solver, mesh generation algorithm).

6. Conclusion

These benchmark cases have revealed a surprising number of useful insights both into the qualities of participating

codes and the nature of mesh adaptation in general. The polar metrics illustrate how metric gradation can make the

metric difficult to satisfy, and how gradation control improves metric conformance across all the participating codes.

We see that the use of a different edge length criteria by EPIC tends to produce longer edges and fewer elements

compared to the other codes, which is important to know when specifying metrics to a certain code. The linear

cube metric shows us that in certain cases using nodal repositioning as EPIC and feflo.a do can increase element

quality beyond what is feasible with topology modification alone, while the cube-cylinder cases show that preventing

low-quality modifications, as Omega h does, better controls the worst element quality in the more difficult cases.

The Unstructured Grid Adaptation Working Group hopes these and future benchmarks can serve as a common

reference point for research in our field. We invite others to apply the benchmark to their codes and submit their

results to the repository. Ideas for improvements or additions to the benchmark cases are also welcome.
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